Diamond:H/Transition Metal Oxides Transfer-Doping: Efficiency and Transistor Performance

Dr. Moshe Tordjman

Prof. Jesus A. del Alamo Dr. Alon Vardi Dr. Zongyou Yin Dr. Youngtack Lee

microsystems technology laboratories massachusetts institute of technology

Prof. Rafi Kalish

Diamond Surface Transfer Doping with Adsorbates Molecules

Strobel et.al Nature, 430, (2004); W. Chen, Prog. Surf. Sci (2009)

Diamond Surface Transfer Doping with **T**ransition **M**etal **O**xides

Tordjman et. al. Advanced Materials Interfaces, 201300155, (2014).

Diamond:H/TMO Transfer Doping

Tordjman et.al. Appl. Phys. Lett.111, 111601 (2017)

MoO₃ Thermal Evaporation Integrity to FET Fabrication Process

ALD MoO₃ Surface Acceptor

250

250

Yin & Tordjman et. al. Science Advances, 4:eaau0480,(2018).

ALD H_vMoO₃ Surface Acceptor

Yin & Tordjman et. al. Science Advances, 4:eaau0480,(2018).

ALD H_vMoO₃ Surface Acceptor

Yin & Tordjman et. al. Science Advances, 4:eaau0480,(2018).

Diamond:H/MoO₃ Vs. H_vMoO₃ Properties

Yin & Tordjman et. al. Science Advances, 4:eaau0480,(2018).

Diamond:H/MoO₃ Vs. H_vMoO₃ FETs

(Configuration	FET							Hall		
		Completed device - Post-process fabrication							Pre-processed structure		
Measured parameters		Hole mobility (cm²/V·s)	Hole concentration (cm ⁻²)	Sheet resistance (kΩ/sq)	Contact resistance (kΩ·μm)	Maximum drain-current ON/OFF ratio	Maximum transconductance (µS/µm)	Minimum subthreshold swing (mV/dec)	Hole mobility (cm²/V·s)	Hole concentration (cm ⁻²)	Sheet resistance (kΩ/sq)
Di	amond:H/MoO ₃	1.7	3.2 × 10 ¹²	260	75	2.7×10^4	0.09	712	26.2	7.9 × 10 ¹³	3.02
Dian	mond:H/H _y MoO _{3-x}	20.2	5.1×1012	43	11	2.1 × 10 ⁵	0.5	143	22.4	$\textbf{1.9}\times\textbf{10}^{13}$	15

Yin & Tordjman et. al. Science Advances, 4:eaau0480,(2018).

MoO₃ Vs. H_vMoO₃ Band-Energy Alignment

Yin & Tordjman et. al. Science Advances, 4:eaau0480,(2018).

MoO₃ Vs. H_vMoO₃ Band-Energy Alignment

MoO3-x

HyMoO3-x

Diamond:H

Yin & Tordjman et. al. Science Advances, 4:eaau0480,(2018).

Diamond:H

Conclusions

- A Novel Advantageous Surface Acceptor: H_vTMO
- ➢General Strategy for Integrating and Modulating Electronic States in H_vTMO.
- Diamond:H/H, MoO₃ Surface Acceptor shows:
- 1. Improved Morphology Smoothness.
- 2. Immunity to Harsh Processing FET Fab.
- 3. Improved Cross-Transport via band-energy alignment.

Thank YoU

